

Plant Archives

Journal homepage: http://www.plantarchives.org DOI Url: https://doi.org/10.51470/PLANTARCHIVES.2025.v25.no.2.191

EFFECT OF FOLIAR SPRAY OF NANO UREA ON GROWTH, YIELD AND ECONOMICS OF TOMATO

N.H. Solanki^{1*}, K.B. Asodariya², K.K. Gajera¹ and S.N. Goplani¹

¹Department of Agronomy, Junagadh Agricultural University, Junagadh, Gujarat, India ²Vegetable Research Station, J. A. U., Junagadh, Gujarat, India *Corresponding author E-mail: solankinidi@gmail.com (Date of Receiving-26-05-2025; Date of Acceptance-05-08-2025)

A field experiment entitled "Effect of foliar spray of nano urea on growth, yield and economics of tomato (Solanum lycopersicum L.)" was carried out on medium black calcareous soil having pH 8.1 and EC 0.52 dS/ m during Rabi season of 2023-24 at Vegetable Research Station, Junagadh Agricultural University, Junagadh (Gujarat). The experiment was laid out in randomized block design with three replications. The experiment comprising of 12 treatments viz., T₁ (Control), T₂(100% RDN + Water spray at 30 and 45 DAT), T₂(75% RDN + 2 foliar spray of 1% urea), T₄ (75% RDN + 2 foliar spray of 2% urea), T₅ (75% RDN + 2 foliar spray of 0.2% **ABSTRACT** nano urea), T_c (75% RDN + 2 foliar spray of 0.4% nano urea), T₇ (75% RDN + 2 foliar spray of 0.6% nano urea), $T_{8}(75\% \text{ RDN} + 3 \text{ foliar spray of } 1\% \text{ urea}), T_{9}(75\% \text{ RDN} + 3 \text{ foliar spray of } 2\% \text{ urea}), T_{10}(75\% \text{ RDN} + 3 \text{ foliar spray of } 2\% \text{ urea})$ spray of 0.2% nano urea), T_{11} (75% RDN + 3 foliar spray of 0.4% nano urea) and T_{12} (75% RDN + 3 foliar spray of 0.6% nano urea). The tomato (GT-6) was transplanted on 29^{th} November, 2023 at a spacing of 75 cm \times 60 cm using seed rate of 300-350 g/ha with standard package of practices.

Key words: Tomato, Foliar spray, Nano urea, Growth, Yield and Economics

Introduction

Tomato (Solanum lycopersicum L.) is a solanaceous crop with chromosome number 2n = 24and one of the most popular vegetables grown all over the world. It tops in the list of processed vegetables in the world (Dhaliwal et al., 1999). Tomato is grown worldwide for local use or as an export crop. World tomato production grew faster between year 2000 and 2019, as its growth went up to 16 per cent in year 2019 (FAOSTAT, 2021). It is cultivated as a cash crop as well as a vegetable crop on commercial lines in almost all parts of India. Its fruits are abundantly rich in vitamins A and B and an excellent source of vitamin C, mineral, organic acids and also contain various flavoring compounds, which enrich the taste and flavor of all vegetable dishes prepared from it. Besides, being popular for salad and soup, tomato is mixed in cooked vegetable curries. It is also one of the most important raw materials for processing industry for making several processed products.

The 100 g fruit contains 94.22 g water, 2.7 g

carbohydrates, 17 kcal energy, 0.89 g protein, 0.24 g total fat, 1.21 g dietary fibre, 0.59 g ash, 3.74 mg sodium, 12.1 mg magnesium, 22.9 mg phosphorus, 10.9 mg sulphur, 48.3 mg chlorine, 265 mg potassium, 10.9 mg calcium, 56.8 µg manganese, 0.13 mg iron, 0.049 mg copper, 0.09 mg zinc, 92 µg vitamin A, 0.024 mg thiamine, 0.005 mg riboflavin, 0.543 mg niacin, 23.7 mg vitamin C and 0.77 mg vitamin E (Hedges and Lister, 2005). It is the richest fruit among natural foods by which the stomach and intestine remain in good condition and thus has very good medicinal property.

Nano urea contains 4.0% total nitrogen (w/v). These particles are evenly dispersed in water. Nano urea because of its small size (20-50 nm) and higher use efficiency (>80%). When sprayed on leaves of plant (2-4 mL/l) at critical growth stages, it increases the instant availability of nutrients to the growing plant parts, increases chlorophyll formation, rate of photosynthesis, dry matter production and thus overall growth of the plants. Nano urea (30-40 nm) can easily penetrate the stomata and easily get entered through plasmodesmata (40 nm) and subsequently take part into the metabolism by binding itself with various carrier proteins. Unused nitrogen is retained in the plant vacuole and released slowly for appropriate plant growth and development (Kumar *et al.*, 2021).

In modern agriculture and horticulture, foliar feeding of nutrients and growth regulators has become a widely adopted practice. This method plays a crucial role in ensuring efficient nutrient use, especially during the critical growth stages of crops, thereby contributing to improved yields. To enhance the nutrient use efficiency of applied fertilizers, it is essential to determine and implement the optimal combination and appropriate levels of both basal (soil-applied) and foliar (leaf-applied) nutrient applications. Basal fertilization provides necessary support during the early growth stages, establishing a strong foundation for crop development. In contrast, foliar feeding ensures that crops receive targeted nutrition during key physiological stages, promoting better performance and higher productivity.

Materials and Methods

An experiment was conducted during Rabi season of 2023-24 at Vegetable Research Station, College of Agriculture, Junagadh Agricultural University, Junagadh (Gujarat) located at 21.5°N latitude and 70.5°E longitude with an altitude of 60 m above mean sea level. The mean maximum and minimum temperature during the crop growth and development period were ranged between 28.1°C to 39.0 °C and 11.0 °C to 23.1 °C, respectively. The soil of the experimental site was clayey in texture (Sand 22.38%, silt 14.35% and clay 63.27%) with a pH of 8.1. The soil had medium organic carbon (0.62) and available N (297.80 kg/ha), P (27.55 kg/ha) and K (235.42 kg/ha). Three times replicated experiment consisted of twelve treatments were laid out in randomized block design (RBD). The experiment comprised 12 treatments in combination of soil application and foliar spray of nano urea viz., T₁ (Control), T₂ (100% RDN + Water spray at 30 and 45 DAT), T₃ (75% RDN + 2 foliar spray of 1% urea), T₄ (75% RDN + 2 foliar spray of 2% urea), T₅ $(75\% \text{ RDN} + 2 \text{ foliar spray of } 0.2\% \text{ nano urea}), T_6(75\% \text{ nano urea})$ RDN + 2 foliar spray of 0.4% nano urea), T_7 (75% RDN + 2 foliar spray of 0.6% nano urea), T_8 (75% RDN + 3 foliar spray of 1% urea), T_o (75% RDN + 3 foliar spray of 2% urea), T_{10} (75% RDN + 3 foliar spray of 0.2% nano urea), T₁₁ (75% RDN + 3 foliar spray of 0.4% nano urea) and T_{12} (75% RDN + 3 foliar spray of 0.6% nano urea). As per recommendation, half nitrogen, full phosphorus and potassium were applied as basal dose in the previously opened furrows to all the plots in the form

Table 1: Effect of different treatments on the growth parameters of tomato.

Treat- ments	PH	LAPP		NBPP	
		At 60	At 75	At 60	At
		DAT	DAT	DAT	harvest
T_1	57.33	98.7	127.7	1.50	2.00
T_2	75.00	188.3	217.3	2.50	3.10
T ₃	65.67	115.3	144.3	1.96	2.50
T_4	64.33	130.0	159.0	2.06	2.60
T_5	65.33	147.5	176.5	2.13	2.63
T ₆	82.67	208.7	237.7	2.73	3.33
T_7	71.00	176.7	195.7	2.66	3.17
T ₈	63.33	116.6	145.6	2.03	2.57
T ₉	71.33	184.0	213.0	2.36	2.97
T_{10}	64.33	149.3	178.3	2.14	2.71
T ₁₁	77.00	195.4	224.4	2.43	3.03
T ₁₂	66.00	145.0	174.0	2.10	2.60
S.Em.±	4.38	10.9	11.7	0.16	0.17
C.D. at 5%	12.87	32.2	34.2	0.48	0.51
C.V.%	11.08	12.28	11.05	12.85	10.95

PH: Plant height (cm)At harvest; **LAPP:** Leaf area (cm²) per plant; **NBPP:** Number of branches per plant

of urea, DAP and MOP, respectively. Remain half dose of nitrogen was applied at 30 DAT through urea as top dressing at evening. (75.0:37.5:62.5 N:P₂O₅:K₂O kg/ha).

Growth Parameters

Plant height (cm)

Five plants were selected randomly from each experimental plot and tagged. Plant height from the base of the plant to the top of longest leaf was measured with the help of a meter scale at harvest. Mean values were worked out for all the treatments and recorded in cm.

Leaf area at 60 and 75 DAT

The leaf area of five randomly tagged plants in each experimental plot was computed at the 60 and 75 DAT by using LI-COR LI-3100C portable leaf area meter with a transparent belt conveyor with an electronic digital display and is expressed in cm².

Number of branches per plant

Number of branches of all the five tagged plants was recorded plot wise at 60 DAT and at harvest average value was recorded.

Yield Attributes and Yield

Number of fruit per plant

Total number of fruits harvested at every picking from five tagged plants were taken into consideration to work out mean number of fruits per plant. This was worked out for every treatment separately.

Table 2: Effect of different treatments on the yield attributes and yield of tomato.

,								
	Number	10-fruit	Fruit	Fresh fruit				
Treatments	of fruits	weight	length	yield				
	per plant	(g)	(cm)	(t/ha)				
T ₁	42.36	570.09	3.18	26.88				
T ₂	55.33	660.01	4.82	36.30				
T ₃	44.66	663.33	4.06	29.47				
T,	46.10	610.66	4.03	31.55				
T _s	45.83	618.67	4.28	34.03				
T ₄	60.80	676.66	5.05	40.06				
T ₇	54.50	619.33	4.22	36.34				
T ₈	47.33	631.23	3.70	30.00				
T _o	55.10	616.06	4.30	36.37				
T ₁₀	49.40	626.65	4.05	34.04				
T ₁₁	56.34	672.69	4.93	38.16				
T ₁₂	46.03	613.66	4.18	33.15				
S.Em.±	2.20	20.64	0.29	1.82				
C.D. at 5%	6.47	60.54	0.86	5.33				
C.V.%	7.59	5.66	12.06	9.29				

10-fruits weight (g)

The same ten fruits taken for recording the weight with the help of electronic balance and total fruits weight in grams was recorded.

Fruit length (cm)

Length of five fruit was measured in cm from the base to the tip of the fruit and average was recorded for each treatment.

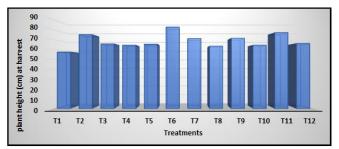
Fruit yield (t/ha)

The fruit yield obtained from each plot (including five tagged plants) in each picking was sum up which gave the total fruit yield per plot and thereafter with the use of multiplication factor the yield was converted into per hectare basis for each treatment.

Table 3: Effect of different treatments on the economics of tomato.

Treatments		Gross return	Cost of cultivation	Net return	B: C
		(Rs/ha)	(Rs/ha)	(Rs/ha)	ratio
T_1	Absolute control	295680	77850	217830	3.79
T ₂	100% RDN + Water spray at 30 and 45 DAT	399336	86369	312968	4.62
T_3	75% RDN + 2 foliar spray of 1% urea	324170	86975	237195	3.72
T_4	75% RDN + 2 foliar spray of 2% urea	347050	87022	260028	3.98
T_5	75% RDN + 2 foliar spray of 0.2% nano urea	374330	87647	286683	4.27
T ₆	75% RDN + 2 foliar spray of 0.4% nano urea	440623	88367	352256	4.99
T ₇	75% RDN + 2 foliar spray of 0.6% nano urea	399776	89087	310689	4.48
T ₈	75% RDN + 3 foliar spray of 1% urea	330000	87004	242996	3.79
T ₉	75% RDN + 3 foliar spray of 2% urea	400070	87081	312989	4.59
T ₁₀	75% RDN + 3 foliar spray of 0.2% nano urea	374440	88097	286343	4.25
T ₁₁	75% RDN + 3 foliar spray of 0.4% nano urea	419796	89267	330529	4.70
T ₁₂	75% RDN + 3 foliar spray of 0.6% nano urea	364613	90437	274176	4.03

Results and Discussion


Growth parameters

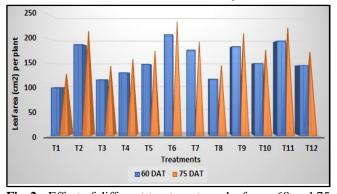
Plant height (cm)

A significantly higher plant height (82.67 cm) recorded under the treatment T_6 (75% RDN + 2 foliar spray of 0.4% nano urea). This significant increase in plant height can be attributed to the synergistic effect of foliar application of nano fertilizers and basal application of conventional fertilizers. This combination likely enhanced the auxin metabolism and enzymatic activity within the plants, promoting cell elongation and enlargement. Furthermore, the high surface area of nano fertilizers compared to conventional forms improves nutrient absorption and metabolic efficiency, ultimately contributing to increased plant growth. The results were in conformity with the results obtained by Abbas and Reema (2019), Mishra et al., (2020), Al-Mugheer and Al-Jumaili (2021), Reddy et al., (2022), Samui et al., (2022) and Singh et al., (2023).

Leaf area

Under treatment T_6 (75% RDN + 2 foliar spray of 0.4% nano urea) recorded significantly the higher leaf area at 60 DAT and 75 DAT. The increase in leaf area may be attributed to the enhanced reactivity of nano fertilizers, which is due to their larger specific surface area and higher surface energy. These nano-scale properties facilitate greater interaction with plant tissues, thereby improving nutrient absorption and promoting leaf development (Dhoke *et al.*, 2013). These findings were acknowledged with the references Maswada and Abd El-Rahman (2014), Hamoda *et al.*, (2016), Manikandan and Subramanian (2016), Mahil and Kumar (2019), Merghany *et al.*, (2019), Al-Jabri *et al.*, (2020), Kumar *et al.*, (2020) and Mishra *et al.*, (2020).

Fig. 1: Effect of different treatment on plant height (cm) at harvest of tomato.


Number of branches per plant

Data revealed that application of treatment T_6 (75% RDN + 2 foliar spray of 0.4% nano urea) led to a remarkable increase of number of branches per plant at 60 DAT (2.73) and at harvest (3.33). The observed increase in the number of branches following foliar application of nano fertilizers can be attributed to several physiological enhancements. This efficient nutrient uptake supports the activation of key enzymes involved in plant growth. For instance, the application of nano-potassium fertilizers has been shown to enhance the activity of nitrate reductase, a crucial enzyme in nitrogen assimilation, leading to improved photosynthetic activity and biomass accumulation. Additionally, nano fertilizers can stimulate the activity of antioxidant enzymes (Nekrasova et al., 2011) such as peroxidase and catalase, which play vital roles in protecting plant cells from oxidative stress and supporting overall plant health. The small size of these particles allows for better penetration into plant tissues, ensuring more than 80% availability to the crop, thereby promoting robust growth and development. These results are in accordance with the findings of Parvin et al., (2013), Mishra et al., (2020), Ojha et al., (2022), Singh et al., (2023).

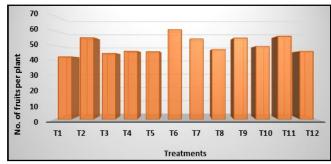
Yield attributes and Yield

Number of fruits per plant

Significantly the higher number of fruits per plant (60.80) was recorded with treatment T_6 (75% RDN + 2

Fig. 2: Effect of different treatments on leaf area 60 and 75 DAT per plant of tomato.

Fig. 3: Effect of different treatments on no of branches per plant at 60 DAT and at harvest.


foliar spray of 0.4% nano urea). This might be due to the reason that nano urea promotes the plant to absorb the water and nutrients from soil, then the photosynthesis is improved (Wu, 2013). Further, nano urea is considered the biological pump for the plants to absorb nutrients and water. Liu and Liao (2008) reported increased water uptake due to application of nano materials which increased the N, P and K uptake and resulted in increased biomass production. Nearly similar results were found by Mishra *et al.*, (2020).

10-Fruit weight (g)

The higher 10-fruit weight of tomato (676.66 g) was observed with the treatment T_6 (75% RDN + 2 foliar spray of 0.4% nano urea). The observed increase in fruit weight may be attributed to the foliar application of nano fertilizers, which enhanced photosynthetic efficiency, promoted dry matter accumulation, and facilitated the effective translocation of photosynthates from source to sink. This enhancement is likely due to the nano fertilizers' ability to penetrate plant tissues efficiently, ensuring timely nutrient delivery and boosting fruit weight. Consequently, this process may have led to a higher accumulation of carbohydrates in storage organs, resulting in increased fruit weight. These results are in accordance to Marzouk et al., (2019) in an experiment on snap bean, Merghany et al., (2019) in cucumber, Mishra et al., (2020) and Panda et al., (2020) in tomato.

Fruit length (cm)

The results indicate that highest length of fruit was

Fig. 4: Effect of different treatments on no. of fruits per plant of tomato.

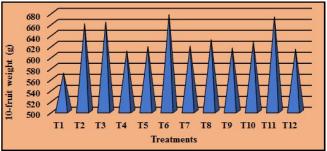
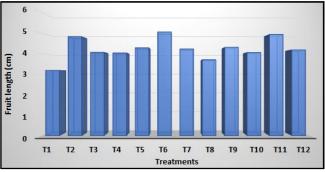



Fig. 5: Effect of different treatments on 10-fruit (g) weight of tomato

observed under the treatment T_6 (75% RDN + 2 foliar spray of 0.4% nano urea). The substantial increase in fruit length can be attributed to an accelerated growth rate and enhanced photosynthetic efficiency, resulting from improved nutrient availability and translocation. This facilitated a more significant allocation of photosynthates from source to sink, promoting increased cell division and the accumulation of these assimilates within the fruit. Consequently, the augmented cell number and expansion contributed to the observed elongation of the fruit. Such results are in conformity with Alasvand and Shokuhfar (2017) in cowpea, Elizabath *et al.*, (2017) in carrot and Mishra *et al.*, (2020) in tomato.

Fresh fruit yield (t/ha)

Significantly the higher fresh fruit yield (40.06 t/ha) was observed under the treatment T_6 (75% RDN + 2 foliar spray of 0.4% nano urea). The observed increase in fresh fruit yield may be attributed to the role of nitrogen in activating several enzymes, such as catalase and tryptophan synthetase, which are essential for chlorophyll synthesis and various physiological activities that promote plant growth and development. Foliar application of nano nitrogen fertilizers has been shown to alleviate chlorosis and produce healthy green leaves, leading to higher assimilate synthesis. This enhanced nutrient availability and translocation likely contributed to increased fruit production and consequently, higher fruit yield. These results are in conformity with the findings of by Merghany *et al.*, (2019), Mishra *et al.*, (2020) and Panda *et al.*,

Fig. 6: Effect of different treatment on fruit length (cm) of tomato.

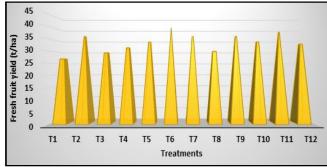
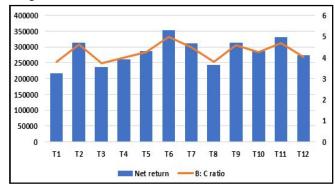


Fig. 7: Effect of different treatment on fresh fruit yield (t/ha) of tomato.

(2020). This is also in agreement with the findings of Sheykhbaglou *et al.*, (2010), Jafarzadeh *et al.*, (2013), Kumar *et al.*, (2014), Abdel-Aziz *et al.*, (2016), Kumar *et al.*, (2020) and Ojha *et al.*, (2022).

Economics

Gross return


The increased gross return could be explained on the basis of increased fresh fruit yield under T_6 (75% RDN + 2 foliar spray of 0.4% nano urea) which was higher than rest of the treatments. These results are in close proximity with the findings of Mishra *et al.*, (2020), Panda *et al.*, (2020), Singh *et al.*, (2023) and Subramani *et al.*, (2023).

Net return

A substantially higher net return found with T_6 (75% RDN + 2 foliar spray of 0.4% nano urea) due to higher fresh fruit yield was observed and also due to lower treatment cost than T_{11} (75% RDN + 3 foliar spray of 0.4% nano urea). These findings are in the line with those reported by Mishra *et al.*, (2020), Panda *et al.*, (2020), Singh *et al.*, (2023) and Subramani *et al.*, (2023).

Benefit: cost ratio

Highest B: C ratio of 4.99 in T_6 (75% RDN + 2 foliar spray of 0.4% nano urea) found due to high fresh fruit yield. These findings are in accordance with those reported by Mishra *et al.*, (2020), Panda *et al.*, (2020), Singh *et al.*, (2023) and Subramani *et al.*, (2023).

Fig. 8: Effect of different treatments on economics of tomato.

Conclusion

Based on one year experimentation, it can be concluded that in South Saurashtra Agro-climatic zone higher growth, yield attributes and fresh fruit yield of tomato (*cv*. Gujarat tomato 6) with higher net returns can be obtained with the application of 75% RDN + 2 foliar spray of 0.4% nano urea.

References

- Abbas, M.K. and Reema J.S. (2019). Impact of nano-fertilizer on the genetic and phenotypic parameters of tomato cultivars. *Research on Crops*, **20**(2), 338-344.
- Abdel-Aziz, H. M., Hasaneen, M. N. and Omer, A. M. (2016). Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. *Spanish Journal of Agricultural Research*, **14**(1), 1-9.
- Alasvand, P. and Shokuhfar A. (2017). Evaluation effect of different levels of zinc and manganese nano-chelate on quantitative and qualitative traits of cowpea (*Vigna unguiculata* L.). *Journal of Crop Nutrition Science*, 3(3), 1-13.
- Al-Jabri, A.R.A., Jassim R.A. and Jabar A.K. (2020). The effect of nano nitrogen and bio-fertilizer types on NPK concentration in soil and okra plant. *Plant Archives*, **20(2)**, 4031-4037.
- Al-Mugheer, L.K.A. and Al-Jumaili M.A.H. (2021). Effect of the fertilizer type on the growth and yield of two tomato hybrids. *Plant Archives*, **21**(1), 927-932.
- Dhaliwal, M.S., Surjan Singh S.S., Badhan B.S. and Cheema D.S. (1999). Diallel analysis for total soluble solids content, pericarp thickness and locule number in tomato. *Vegetable Science*, **26(2)**, 120-122.
- Dhoke, S.K., Mahajan P., Kamble R. and Khanna A. (2013). Effect of nanoparticles suspension on the growth of mung (*Vigna radiata*) seedlings by foliar spray method. *Nanotechnology development*, **3(1)**, 1-5.
- Elizabath, A., Bahadur V., Misra P., Prasad V.M. and Thomas T. (2017). Effect of different concentrations of iron oxide and zinc oxide nanoparticles on growth and yield of carrot (*Daucus carota L.*). Journal of Pharmacognosy and Phytochemistry, **6(4)**, 1266-1269.
- FAOSTAT (2021). World food and agriculture 2021 statistical yearbook Food Agriculture Organization, Rome, https://www.fao.org/3/cb4477, (12). Accessed on 29 Sept. 2024.
- Hamoda, S.A.F., Attia A.N.E., El-Hendi M.H. and El-Sayed S.O.S. (2016). Effect of nano fertilizer (lithovit) and potassium on growth, fruiting and yield of Egyptian cotton under different planting dates. *International Journal of Advance Research in Biological Science*, 3(12), 29-49.
- Hedges, L.J. and Lister C.E. (2005). Nutritional attributes of tomatoes. *Crop and Food Research Confidential Report*, (1391), 1-11.
- Jafarzadeh, R., Jami M.M. and Hokmabadi M. (2013). Response of yield and yield components in wheat to soil and foliar

- application of nano potassium fertilizer. Journal of crop production research (Environmental stresses in Plant Sciences), **5(2)**, 189-197.
- Kumar, R., Pandey D.S., Singh V.P. and Singh I.P. (2014). Nanotechnology for better fertilizer use (Research Experiences at Pantnagar). *Research Bulletin no.* 201.
- Kumar, Y., Singh T., Raliya R. and Tiwari K.N. (2021). Nano fertilizers for sustainable crop production, higher nutrient use efficiency and enhanced profitability. *Indian Journal of Fertilisers*, **17**(11), 1206-1214.
- Kumar, Y., Tiwari K.N., Nayak R.K., Rai A., Singh S.P., Singh A.N., Kumar Y., Tomar H., Singh T. and Raliya R. (2020). Nano fertilizers for increasing nutrient use efficiency, yield and economic returns in important winter season crops of Uttar Pradesh. *Indian Journal of Fertilisers*, 16(8), 772-786.
- Kumar, Y., Singh T., Raliya R. and Tiwari K.N. (2021). Nano fertilizers for sustainable crop production, higher nutrient use efficiency and enhanced profitability. *Indian Journal of Fertilisers*, **17**(11), 1206-1214.
- Liu, A.X. and Liao Z.W. (2008). Effects of nano-materials on water clusters. *Journal of Anhui Agricultural Sciences*, **36(36)**, 15780-15781.
- Mahil, E.I.T. and Kumar B.N.A. (2019). Foliar application of nano fertilizers in agricultural crops. *Journal of Farm Sciences*, **32**(3), 239-249.
- Manikandan, A. and Subramanian K.S. (2016). Evaluation of zeolite-based nitrogen nano fertilizers on maize growth, yield and quality on *inceptisols* and *alfisols*. *International Journal of Plant and Soil Science*, **9(4)**, 1-9.
- Marzouk, N.M., Abd-Alrahman H.A., El-Tanahy A.M.M. and Mahmoud S.H. (2019). Impact of foliar spraying of nano micronutrient fertilizers on the growth, yield, physical quality, and nutritional value of two snap bean cultivars in sandy soils. *Bulletin of the National Research Centre*, **43(1)**, 1-9.
- Maswada, H.F. and Abd El-Rahman L.A. (2014). Inducing salinity tolerance in wheat plants by hydrogen peroxide and lithovit "a nano-CaCO₃ fertilizer. *Journal of Agricultural Research*, **40(4)**, 696-719.
- Merghany, M.M., Shahein M.M., Sliem M.A., Abdelgawad K.F. and Radwan A.F. (2019). Effect of nano-fertilizers on cucumber plant growth, fruit yield and it's quality. *Plant Archives*, **19(2)**, 165-172.
- Mishra, B., Sahu G.S., Mohanty L.K., Swain B.C. and Hati S. (2020). Effect of nano fertilizers on growth, yield and economics of tomato variety arka rakshak. *Indian Journal of Pure and Applied Biosciences*, **8(6)**, 200-204.
- Nekrasova, G.F., Ushakova O.S., Ermakov A.E., Uimin M.A. and Byzov I.V. (2011). Effects of copper ions and copper oxide nanoparticles on *Elodea densa* Planch. *Russian Journal of Ecology*, **42(6)**, 458-463.
- Ojha, S., Nandi A., Mishra S.P., Mohanty L.K. and Panigrahi S.K. (2022) The effects of nano fertilizers on growth and

- yield of okra. Agricultural Mechanization in Asia, Africa and Latin America, 53(11), 10375-10381.
- Panda, J., Nandi A., Mishra S.P., Pal A.K., Pattnaik A.K. and Jena N.K. (2020). Effects of nano fertilizer on yield, yield attributes and economics in tomato (Solanum lycopersicum L.). International Journal of Current Microbiology and Applied Sciences, 9(5), 2583-2591.
- Parvin, S., Uddin S., Khanum S. and Bhuiya M.S.U. (2013). Effect of weeding and foliar urea spray on the yield and yield components of Boro rice. *American-Eurasian Journal of Agricultural & Environment Sciences*, 13, 866-871.
- Reddy, B.M., Elankavi S., Midde S.K., Mattepally V.S. and Bhumireddy D.V. (2022). Effects of conventional and nano fertilizers on growth and yield of maize (*Zea mays L.*). *Bhartiya Krishi Anusandhan Patrika*, **37(4)**, 379-382.
- Samui, S., Sagar L., Sankar T., Manohar A., Adhikary R., Maitra S. and Praharaj S. (2022). Growth and productivity of *Rabi* maize as influenced by foliar application of urea and nano urea. *Crop Research*, **57**(3), 136-140.

- Sheykhbaglou, R., Sedghi M., Shishevan M.T. and Sharifi R.S. (2010). Effects of nano-iron oxide particles on agronomic traits of soybean. *Notulae Scientia Biologicae*, **2(2)**, 112-113
- Singh, P.P., Priyam A., Singh J. and Gupta N. (2023). Biologically synthesised urea-based nanomaterial shows enhanced agronomic benefits in maize and rice crops during *Kharif* season. *Scientia Horticulturae*, 315, 111988.
- Subramani, T., Velmurugan A., Bommayasamy N., Swarnam T.P., Ramakrishna Y., Jaisankar I. and Singh L. (2023). Effect of Nano Urea on growth, yield and nutrient use efficiency of okra under tropical island ecosystem. *International Journal of Agricultural Sciences*, 19(1), 134-139.
- Wu, M.Y. (2013). Effects of incorporation of nano-carbon into slow-released fertilizer on rice yield and nitrogen loss in surface water of paddy soil. *Advance Journal of Food Science and Technology*, **5(4)**, 398-403.